Criticality in translation-invariant parafermion chains
نویسندگان
چکیده
منابع مشابه
Stability of zero modes in parafermion chains
Adam S. Jermyn,1,* Roger S. K. Mong,1 Jason Alicea,1 and Paul Fendley2 1Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 2Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714, USA (Received 27 August 2014; revised manuscript received 23 September 2014; published 7 October 2014)
متن کاملOn a Metric on Translation Invariant Spaces
In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.
متن کاملTranslation invariant surfaces in the 3-dimensional Heisenberg group
In this paper, we study translation invariant surfaces in the 3-dimensional Heisenberg group $rm Nil_3$. In particular, we completely classify translation invariant surfaces in $rm Nil_3$ whose position vector $x$ satisfies the equation $Delta x = Ax$, where $Delta$ is the Laplacian operator of the surface and $A$ is a $3 times 3$-real matrix.
متن کاملTranslation invariant mappings on KPC-hypergroups
In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.
متن کاملtranslation invariant surfaces in the 3-dimensional heisenberg group
in this paper, we study translation invariant surfaces in the 3-dimensional heisenberg group $rm nil_3$. in particular, we completely classify translation invariant surfaces in $rm nil_3$ whose position vector $x$ satisfies the equation $delta x = ax$, where $delta$ is the laplacian operator of the surface and $a$ is a $3 times 3$-real matrix.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2015
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.91.115133